4,515 research outputs found

    An internet of laboratory things

    Get PDF
    By creating “an Internet of Laboratory Things” we have built a blend of real and virtual laboratory spaces that enables students to gain practical skills necessary for their professional science and engineering careers. All our students are distance learners. This provides them by default with the proving ground needed to develop their skills in remotely operating equipment, and collaborating with peers despite not being co-located. Our laboratories accommodate state of the art research grade equipment, as well as large-class sets of off-the-shelf work stations and bespoke teaching apparatus. Distance to the student is no object and the facilities are open all hours. This approach is essential for STEM qualifications requiring development of practical skills, with higher efficiency and greater accessibility than achievable in a solely residential programme

    Does poverty cause conflict? Isolating the causal origins of the conflict trap

    Get PDF
    Does poverty cause civil conflict? A considerable literature seeks to answer this question, yet concerns about reverse causality threaten the validity of extant conclusions. To estimate the impact of poverty on conflict and to determine whether the relationship between them is causal, it is necessary to identify a source of exogenous variation in poverty. We do this by introducing a robust instrument for poverty: a time-varying measure of international inequalities. We draw upon existing theories about the structural position of a country in the international economic network—specifically, the expectation that countries in the core tend to be wealthier and those on the periphery struggle to develop. This instrument is plausibly exogenous and satisfies the exclusion restriction, which suggests that it affects conflict only through its influence upon poverty. Instrumental variables probit regression is employed to demonstrate that the impact of poverty upon conflict appears to be causal

    An investigative study of a spectrum-matching imaging system Final report

    Get PDF
    Evaluation system for classification of remote objects and materials identified by solar and thermal radiation emissio

    Hall drift of axisymmetric magnetic fields in solid neutron-star matter

    Full text link
    Hall drift, i. e., transport of magnetic flux by the moving electrons giving rise to the electrical current, may be the dominant effect causing the evolution of the magnetic field in the solid crust of neutron stars. It is a nonlinear process that, despite a number of efforts, is still not fully understood. We use the Hall induction equation in axial symmetry to obtain some general properties of nonevolving fields, as well as analyzing the evolution of purely toroidal fields, their poloidal perturbations, and current-free, purely poloidal fields. We also analyze energy conservation in Hall instabilities and write down a variational principle for Hall equilibria. We show that the evolution of any toroidal magnetic field can be described by Burgers' equation, as previously found in plane-parallel geometry. It leads to sharp current sheets that dissipate on the Hall time scale, yielding a stationary field configuration that depends on a single, suitably defined coordinate. This field, however, is unstable to poloidal perturbations, which grow as their field lines are stretched by the background electron flow, as in instabilities earlier found numerically. On the other hand, current-free poloidal configurations are stable and could represent a long-lived crustal field supported by currents in the fluid stellar core.Comment: 8 pages, 5 figure panels; new version with very small correction; accepted by Astronomy & Astrophysic

    Fermi surface instabilities in CeRh2Si2 at high magnetic field and pressure

    Full text link
    We present thermoelectric power (TEP) studies under pressure and high magnetic field in the antiferromagnet CeRh2Si2 at low temperature. Under magnetic field, large quantum oscillations are observed in the TEP, S(H), in the antiferromagnetic phase. They suddenly disappear when entering in the polarized paramagnetic (PPM) state at Hc pointing out an important reconstruction of the Fermi surface (FS). Under pressure, S/T increases strongly of at low temperature near the critical pressure Pc, where the AF order is suppressed, implying the interplay of a FS change and low energy excitations driven by spin and valence fluctuations. The difference between the TEP signal in the PPM state above Hc and in the paramagnetic state (PM) above Pc can be explained by different FS. Band structure calculations at P = 0 stress that in the AF phase the 4f contribution at the Fermi level (EF) is weak while it is the main contribution in the PM domain. By analogy to previous work on CeRu2Si2, in the PPM phase of CeRh2Si2 the 4f contribution at EF will drop.Comment: 10 pages, 13 figure
    corecore